Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276556

RESUMO

There is a growing interest in studies involving carbohydrate (CHO) manipulation and subsequent adaptations to endurance training. This study aimed to analyze whether a periodized carbohydrate feeding strategy based on a daily training session has any advantages compared to a high-carbohydrate diet in well-trained cyclists. Seventeen trained cyclists (VO2peak = 70.8 ± 6.5 mL·kg-1·min-1) were divided into two groups, a periodized (PCHO) group and a high-carbohydrate (HCHO) group. Both groups performed the same training sessions for five weeks. In the PCHO group, 13 training sessions were performed with low carbohydrate availability. In the HCHO group, all sessions were completed following previous carbohydrate intake to ensure high pre-exercise glycogen levels. In both groups, there was an increase in the maximal lactate steady state (MLSS) (PCHO: 244.1 ± 29.9 W to 253.2 ± 28.4 W; p = 0.008; HCHO: 235.8 ± 21.4 W to 246.9 ± 16.7 W; p = 0.012) but not in the time to exhaustion at MLSS intensity. Both groups increased the percentage of muscle mass (PCHO: p = 0.021; HCHO: p = 0.042) and decreased the percent body fat (PCHO: p = 0.021; HCHO: p = 0.012). We found no differences in carbohydrate or lipid oxidation, heart rate, and post-exercise lactate concentration. Periodizing the CHO intake in well-trained cyclists during a 5-week intervention did not elicit superior results to an energy intake-matched high-carbohydrate diet in any of the measured outcomes.


Assuntos
Hexaclorocicloexano/análogos & derivados , Ácido Láctico , Resistência Física , Humanos , Resistência Física/fisiologia , Tolerância ao Exercício , Glicogênio/metabolismo , Dieta , Carboidratos da Dieta , Consumo de Oxigênio
2.
Sports Med ; 53(8): 1651-1665, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37148487

RESUMO

BACKGROUND AND OBJECTIVE: Metabolomics studies of recreational and elite athletes have been so far limited to venipuncture-dependent blood sample collection in the setting of controlled training and medical facilities. However, limited to no information is currently available to determine if findings in laboratory settings are translatable to a real-world scenario in elite competitions. The goal of this study was to define molecular signatures of exertion under controlled exercise conditions and use these signatures as a framework for assessing cycling performance in a World Tour competition. METHODS: To characterize molecular profiles of exertion in elite athletes during cycling, we performed metabolomics analyses on blood isolated from 28 international-level, elite, World Tour professional male athletes from a Union Cycliste Internationale World Team taken before and after a graded exercise test to volitional exhaustion and before and after a long aerobic training session. Moreover, established signatures were then used to characterize the metabolic physiology of five of these cyclists who were selected to represent the same Union Cycliste Internationale World Team during a seven-stage elite World Tour race. RESULTS: Using dried blood spot collection to circumvent logistical hurdles associated with field sampling, these studies defined metabolite signatures and fold change ranges of anaerobic or aerobic exertion in elite cyclists, respectively. Blood profiles of lactate, carboxylic acids, fatty acids, and acylcarnitines differed between exercise modes. The graded exercise test elicited significant two- to three-fold accumulations in lactate and succinate, in addition to significant elevations in free fatty acids and acylcarnitines. Conversely, the long aerobic training session elicited a larger magnitude of increase in fatty acids and acylcarnitines without appreciable increases in lactate or succinate. Comparable signatures were revealed after sprinting and climbing stages, respectively, in a World Tour race. In addition, signatures of elevated fatty acid oxidation capacity correlated with competitive performance. CONCLUSIONS: Collectively, these studies provide a unique view of alterations in the blood metabolome of elite athletes during competition and at the peak of their performance capabilities. Furthermore, they demonstrate the utility of dried blood sampling for omics analysis, thereby enabling molecular monitoring of athletic performance in the field during training and competition.


Assuntos
Desempenho Atlético , Humanos , Masculino , Ciclismo/fisiologia , Exercício Físico/fisiologia , Lactatos , Succinatos
3.
Postgrad Med J ; 99(1174): 844-848, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37125640

RESUMO

Thiamine is present in many foods and is well recognised as an essential nutrient critical for energy metabolism. While thiamine deficiency is commonly recognised in alcoholism, it can present in many other settings where it is often not considered and goes unrecognised. One challenging aspect to diagnosis is that it may have varied metabolic, neurological and cardiac presentations. Here we present an overview of the disorder, focusing on the multiple causes and clinical presentations. Interestingly, thiamine deficiency is likely increasing in frequency, especially among wildlife, where it is linked with changing environments and climate change. Thiamine deficiency should be considered whenever neurological or cardiological disease of unknown aetiology presents, especially in any patient presenting with lactic acidosis.


Assuntos
Acidose Láctica , Alcoolismo , Deficiência de Tiamina , Humanos , Deficiência de Tiamina/diagnóstico , Deficiência de Tiamina/etiologia , Tiamina , Acidose Láctica/complicações , Acidose Láctica/diagnóstico , Alcoolismo/complicações , Alimentos
4.
Antioxidants (Basel) ; 12(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37107158

RESUMO

The role of mitochondrial function in health and disease has become increasingly recognized, particularly in the last two decades. Mitochondrial dysfunction as well as disruptions of cellular bioenergetics have been shown to be ubiquitous in some of the most prevalent diseases in our society, such as type 2 diabetes, cardiovascular disease, metabolic syndrome, cancer, and Alzheimer's disease. However, the etiology and pathogenesis of mitochondrial dysfunction in multiple diseases have yet to be elucidated, making it one of the most significant medical challenges in our history. However, the rapid advances in our knowledge of cellular metabolism coupled with the novel understanding at the molecular and genetic levels show tremendous promise to one day elucidate the mysteries of this ancient organelle in order to treat it therapeutically when needed. Mitochondrial DNA mutations, infections, aging, and a lack of physical activity have been identified to be major players in mitochondrial dysfunction in multiple diseases. This review examines the complexities of mitochondrial function, whose ancient incorporation into eukaryotic cells for energy purposes was key for the survival and creation of new species. Among these complexities, the tightly intertwined bioenergetics derived from the combustion of alimentary substrates and oxygen are necessary for cellular homeostasis, including the production of reactive oxygen species. This review discusses different etiological mechanisms by which mitochondria could become dysregulated, determining the fate of multiple tissues and organs and being a protagonist in the pathogenesis of many non-communicable diseases. Finally, physical activity is a canonical evolutionary characteristic of humans that remains embedded in our genes. The normalization of a lack of physical activity in our modern society has led to the perception that exercise is an "intervention". However, physical activity remains the modus vivendi engrained in our genes and being sedentary has been the real intervention and collateral effect of modern societies. It is well known that a lack of physical activity leads to mitochondrial dysfunction and, hence, it probably becomes a major etiological factor of many non-communicable diseases affecting modern societies. Since physical activity remains the only stimulus we know that can improve and maintain mitochondrial function, a significant emphasis on exercise promotion should be imperative in order to prevent multiple diseases. Finally, in populations with chronic diseases where mitochondrial dysfunction is involved, an individualized exercise prescription should be crucial for the "metabolic rehabilitation" of many patients. From lessons learned from elite athletes (the perfect human machines), it is possible to translate and apply multiple concepts to the betterment of populations with chronic diseases.

5.
bioRxiv ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36993762

RESUMO

The Warburg Effect is characterized by accelerated glycolytic metabolism and lactate production and under fully aerobic conditions is a hallmark of cancer cells. Recently, we have demonstrated the role of endogenous, glucose-derived lactate as an oncometabolite which regulates gene expression in the estrogen receptor positive (ER+) MCF7 cell line cultivated in glucose media. Presently, with the addition of a triple negative breast cancer (TNBC) cell line, MDA-MB-231, we further confirm the effect of lactate on gene expression patterns and extend results to include lactate effects on protein expression. As well, we report effects of lactate on the expression of E-cadherin and vimentin, proteins associated with epithelial-to-mesenchymal transition (EMT). Endogenous lactate regulates the expression of multiple genes involved in carcinogenesis. In MCF7 cells, lactate increased the expression of EGFR, VEGF, HIF-1a, KRAS, MIF, mTOR, PIK3CA, TP53, and CDK4 as well as decreased the expression of ATM, BRCA1, BRCA2, E2F1, MET, MYC, and RAF mainly after 48h of exposure. On the other hand, in the MDA-MB-231 cell line, lactate increased the expressions of PIK3CA, VEGF, EGFR, mTOR, HIF-1α, ATM, E2F1, TP53 and decreased the expressions of BRCA1, BRCA2, CDK4, CDK6, MET, MIF, MYC, and RAF after 48h of exposure. In response to endogenous lactate, changes in protein expression of representative genes corroborated changes in mRNA expressions. Finally, lactate exposure decreased E-cadherin protein expression in MCF7 cells and increased vimentin expression in MDA-MB-231 cells. Furthermore, by genetically silencing LDHA in MCF7 cells, we show suppression of protein expression of EGFR and HIF-1α, while full protein expression occurred under glucose and glucose + exogenous lactate exposure. Hence, endogenous, glucose-derived lactate, and not glucose, elicited changes in gene and protein expression levels. In this study, we demonstrate that endogenous lactate produced under aerobic conditions (Warburg Effect) elicits important changes in gene and protein expression in both ER+ and TNBC cell lines. The widespread regulation of multiple genes by lactate and involves those involved in carcinogenesis including DNA repair, cell growth, proliferation, angiogenesis, and metastasis. Furthermore, lactate affected the expression of two relevant EMT biomarkers, E-cadherin and vimentin, which could contribute to the complex process of EMT and a shift towards a more mesenchymal phenotype in the two cancer cell lines studied.

6.
Metabolites ; 12(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36355108

RESUMO

Exercise intolerance is a major manifestation of post-acute sequelae of severe acute respiratory syndrome coronavirus infection (PASC, or "long-COVID"). Exercise intolerance in PASC is associated with higher arterial blood lactate accumulation and lower fatty acid oxidation rates during graded exercise tests to volitional exertion, suggesting altered metabolism and mitochondrial dysfunction. It remains unclear whether the profound disturbances in metabolism that have been identified in plasma from patients suffering from acute coronavirus disease 2019 (COVID-19) are also present in PASC. To bridge this gap, individuals with a history of previous acute COVID-19 infection that did not require hospitalization were enrolled at National Jewish Health (Denver, CO, USA) and were grouped into those that developed PASC (n = 29) and those that fully recovered (n = 16). Plasma samples from the two groups were analyzed via mass spectrometry-based untargeted metabolomics and compared against plasma metabolic profiles of healthy control individuals (n = 30). Observational demographic and clinical data were retrospectively abstracted from the medical record. Compared to plasma of healthy controls or individuals who recovered from COVID-19, PASC plasma exhibited significantly higher free- and carnitine-conjugated mono-, poly-, and highly unsaturated fatty acids, accompanied by markedly lower levels of mono-, di- and tricarboxylates (pyruvate, lactate, citrate, succinate, and malate), polyamines (spermine) and taurine. Plasma from individuals who fully recovered from COVID-19 exhibited an intermediary metabolic phenotype, with milder disturbances in fatty acid metabolism and higher levels of spermine and taurine. Of note, depletion of tryptophan-a hallmark of disease severity in COVID-19-is not normalized in PASC patients, despite normalization of kynurenine levels-a tryptophan metabolite that predicts mortality in hospitalized COVID-19 patients. In conclusion, PASC plasma metabolites are indicative of altered fatty acid metabolism and dysfunctional mitochondria-dependent lipid catabolism. These metabolic profiles obtained at rest are consistent with previously reported mitochondrial dysfunction during exercise, and may pave the way for therapeutic intervention focused on restoring mitochondrial fat-burning capacity.

7.
Front Nutr ; 9: 809485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308271

RESUMO

Introduction: Lactate is an important signaling molecule with autocrine, paracrine and endocrine properties involved in multiple biological processes including regulation of gene expression and metabolism. Levels of lactate are increased chronically in diseases associated with cardiometabolic disease such as heart failure, type 2 diabetes, and cancer. Using neonatal ventricular myocytes, we tested the hypothesis that chronic lactate exposure could decrease the activity of cardiac mitochondria that could lead to metabolic inflexibility in the heart and other tissues. Methods: Neonatal rat ventricular myocytes (NRVMs) were treated for 48 h with 5, 10, or 20 mM lactate and CPT I and II activities were tested using radiolabelled assays. The molecular species profile of the major mitochondrial phospholipid, cardiolipin, was determined using electrospray ionization mass spectrometry along with reactive oxygen species (ROS) levels measured by Amplex Red and mitochondrial oxygen consumption using the Seahorse analyzer. Results: CPT I activity trended downward (p = 0.07) and CPT II activity significantly decreased with lactate exposure (p < 0.001). Cardiolipin molecular species containing four 18 carbon chains (72 carbons total) increased with lactate exposure, but species of other sizes decreased significantly. Furthermore, ROS production was strongly enhanced with lactate (p < 0.001) and mitochondrial ATP production and maximal respiration were both significantly down regulated with lactate exposure (p < 0.05 and p < 0.01 respectively). Conclusions: Chronic lactate exposure in cardiomyocytes leads to a decrease in fatty acid transport, alterations of cardiolipin remodeling, increases in ROS production and decreases in mitochondrial oxygen consumption that could have implications for both metabolic health and flexibility. The possibility that both intra-, or extracellular lactate levels play roles in cardiometabolic disease, heart failure, and other forms of metabolic inflexibility needs to be assessed in vivo.

10.
Curr Opin Crit Care ; 27(4): 390-398, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33973897

RESUMO

PURPOSE OF REVIEW: Addressing the reduced quality of life that affects ICU survivors is the most pressing challenge in critical care medicine. In order to meet this challenge, we must translate lessons learnt from assessing and training athletes to the clinical population, utilizing measurable and targeted parameters obtained during cardiopulmonary exercise testing (CPET). RECENT FINDINGS: Critical illness survivors demonstrate a persistent reduction in their physical and metabolic function. This manifests in reduced aerobic exercise capacity and metabolic inflexibility. CPET-guided targeted metabolic conditioning has proved beneficial in several clinical populations, including those undergoing high-risk surgery, and could be successfully applied to the rehabilitation of ICU survivors. SUMMARY: CPET shows great promise in the guidance of rehabilitation in functionally limited ICU survivors. Parallels in the physiological response to exercise in athletes and clinical populations with the stress and consequences of critical illness must be investigated and ultimately applied to the burgeoning population of ICU survivors in order to treat the consequences of survival from critical illness.


Assuntos
Teste de Esforço , Qualidade de Vida , Cuidados Críticos , Estado Terminal , Humanos , Unidades de Terapia Intensiva
11.
Nutrients ; 12(7)2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664622

RESUMO

In our paper published in this journal, we present a pilot study application of a novel way to "indirectly assess" skeletal muscle glycogen based on the methodology that we developed though high-frequency skeletal muscle ultrasound [...].


Assuntos
Atletas , Glicogênio/metabolismo , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Futebol , Ultrassonografia/métodos , Estudos Transversais , Fadiga , Humanos , Masculino , Contração Muscular , Músculo Esquelético/fisiologia , Projetos Piloto
12.
Front Physiol ; 11: 578, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581847

RESUMO

The study of elite athletes provides a unique opportunity to define the upper limits of human physiology and performance. Across a variety of sports, these individuals have trained to optimize the physiological parameters of their bodies in order to compete on the world stage. To characterize endurance capacity, techniques such as heart rate monitoring, indirect calorimetry, and whole blood lactate measurement have provided insight into oxygen utilization, and substrate utilization and preference, as well as total metabolic capacity. However, while these techniques enable the measurement of individual, representative variables critical for sports performance, they lack the molecular resolution that is needed to understand which metabolic adaptations are necessary to influence these metrics. Recent advancements in mass spectrometry-based analytical approaches have enabled the measurement of hundreds to thousands of metabolites in a single analysis. Here we employed targeted and untargeted metabolomics approaches to investigate whole blood responses to exercise in elite World Tour (including Tour de France) professional cyclists before and after a graded maximal physiological test. As cyclists within this group demonstrated varying blood lactate accumulation as a function of power output, which is an indicator of performance, we compared metabolic profiles with respect to lactate production to identify adaptations associated with physiological performance. We report that numerous metabolic adaptations occur within this physically elite population (n = 21 males, 28.2 ± 4.7 years old) in association with the rate of lactate accumulation during cycling. Correlation of metabolite values with lactate accumulation has revealed metabolic adaptations that occur in conjunction with improved endurance capacity. In this population, cycling induced increases in tricarboxylic acid (TCA) cycle metabolites and Coenzyme A precursors. These responses occurred proportionally to lactate accumulation, suggesting a link between enhanced mitochondrial networks and the ability to sustain higher workloads. In association with lactate accumulation, altered levels of amino acids before and after exercise point to adaptations that confer unique substrate preference for energy production or to promote more rapid recovery. Cyclists with slower lactate accumulation also have higher levels of basal oxidative stress markers, suggesting long term physiological adaptations in these individuals that support their premier competitive status in worldwide competitions.

13.
Nutrients ; 12(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244614

RESUMO

Skeletal muscle glycogen (SMG) stores in highly glycolytic activities regulate muscle contraction by controlling calcium release and uptake from sarcoplasmic reticulum, which could affect muscle contraction. Historically, the assessment of SMG was performed through invasive and non-practical muscle biopsies. In this study we have utilized a novel methodology to assess SMG through a non-invasive high-frequency ultrasound. Nine MLS professional soccer players (180.4 ± 5.9 cm; 72.4 ± 9.3 kg; 10.4% ± 0.7% body fat) participated. All followed the nutritional protocol 24 h before the official match as well as performing the same practice program the entire week leading to the match. The SMG decreased from 80 ± 8.6 to 63.9 ± 10.2; p = 0.005 on MuscleSound® score (0-100) representing a 20% ± 10.4% decrease in muscle glycogen after match. Inter-individual differences in both starting glycogen content (65-90) and in percentage decrease in glycogen after the match (between 6.2% and 44.5%). Some players may not start the match with adequate SMG while others' SMG decreased significantly throughout the game. Adequate pre-match SMG should be achieved during half-time and game-play in order to mitigate the decrease in glycogen. Further and more ample studies are needed before the application of this technology.


Assuntos
Atletas , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Fenômenos Fisiológicos da Nutrição/fisiologia , Futebol/fisiologia , Ultrassonografia/métodos , Glicogênio/fisiologia , Glicólise , Humanos , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/diagnóstico por imagem
14.
Methods Mol Biol ; 1978: 431-446, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119678

RESUMO

The field of sports medicine and performance has undergone an important transformation in the past years where the scientific approach is becoming increasingly more important for teams and athletes. Physical and physiological fitness, nutrition, fatigue and recovery, as well as injury prevention are key elements of the scientific monitoring of athletes nowadays. Many different methods are used nowadays as part of the scientific monitoring and testing of the competitive athlete. Among them, physiological and metabolic testing, biomechanical and movement assessments, GPS-based tracking systems, heart rate monitors, power meters, and training software are an integrative part of the scientific monitor program of many teams and athletes.Blood biomarkers through traditional blood analysis have been used for over three decades (mainly in Europe) to monitor athletic performance. In the same manner that different cells in the body respond to the stress of an infection or a disease, cells in athletes respond to the stress of competition and training. Nowadays, the area of blood biomarkers is an emerging field in the US offering important level of possibilities to monitor athletes. The field of metabolomics can offer a significantly higher level of blood biomarkers for sports medicine and performance monitoring.


Assuntos
Desempenho Atlético/fisiologia , Biomarcadores/sangue , Metabolômica/métodos , Medicina Esportiva/métodos , Atletas , Europa (Continente) , Humanos , Monitorização Fisiológica/métodos
15.
Front Oncol ; 9: 1536, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010625

RESUMO

Lactate is a ubiquitous molecule in cancer. In this exploratory study, our aim was to test the hypothesis that lactate could function as an oncometabolite by evaluating whether lactate exposure modifies the expression of oncogenes, or genes encoding transcription factors, cell division, and cell proliferation in MCF7 cells, a human breast cancer cell line. Gene transcription was compared between MCF7 cells incubated in (a) glucose/glutamine-free media (control), (b) glucose-containing media to stimulate endogenous lactate production (replicating some of the original Warburg studies), and (c) glucose-containing media supplemented with L-lactate (10 and 20 mM). We found that both endogenous, glucose-derived lactate and exogenous, lactate supplementation significantly affected the transcription of key oncogenes (MYC, RAS, and PI3KCA), transcription factors (HIF1A and E2F1), tumor suppressors (BRCA1, BRCA2) as well as cell cycle and proliferation genes involved in breast cancer (AKT1, ATM, CCND1, CDK4, CDKN1A, CDK2B) (0.001 < p < 0.05 for all genes). Our findings support the hypothesis that lactate acts as an oncometabolite in MCF7 cells. Further research is necessary on other cell lines and biopsy cultures to show generality of the findings and reveal the mechanisms by which dysregulated lactate metabolism could act as an oncometabolite in carcinogenesis.

16.
Sports Med ; 48(2): 467-479, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28623613

RESUMO

BACKGROUND: Increased muscle mitochondrial mass is characteristic of elite professional endurance athletes (PAs), whereas increased blood lactate levels (lactatemia) at the same absolute submaximal exercise intensities and decreased mitochondrial oxidative capacity are characteristics of individuals with low aerobic power. In contrast to PAs, patients with metabolic syndrome (MtS) are characterized by a decreased capacity to oxidize lipids and by early transition from fat to carbohydrate oxidation (FATox/CHOox), as well as elevated blood lactate concentration [La-] as exercise power output (PO) increases, a condition termed 'metabolic inflexibility'. OBJECTIVE: The aim of this study was to assess metabolic flexibility across populations with different metabolic characteristics. METHODS: We used indirect calorimetry and [La-] measurements to study the metabolic responses to exercise in PAs, moderately active individuals (MAs), and MtS individuals. RESULTS: FATox was significantly higher in PAs than MAs and patients with MtS (p < 0.01), while [La-] was significantly lower in PAs compared with MAs and patients with MtS. FATox and [La-] were inversely correlated in all three groups (PA: r = -0.97, p < 0.01; MA: r = -0.98, p < 0.01; MtS: r = -0.92, p < 0.01). The correlation between FATox and [La-] for all data points corresponding to all populations studied was r = -0.76 (p < 0.01). CONCLUSIONS: Blood lactate accumulation is negatively correlated with FATox and positively correlated with CHOox during exercise across populations with widely ranging metabolic capabilities. Because both lactate and fatty acids are mitochondrial substrates, we believe that measurements of [La-] and FATox rate during exercise provide an indirect method to assess metabolic flexibility and oxidative capacity across individuals of widely different metabolic capabilities.


Assuntos
Atletas , Metabolismo dos Carboidratos/fisiologia , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Lactatos/sangue , Metabolismo dos Lipídeos/fisiologia , Teste de Esforço , Humanos , Masculino , Oxirredução , Consumo de Oxigênio , Resistência Física
17.
Curr Opin Crit Care ; 23(4): 269-278, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28661414

RESUMO

PURPOSE OF REVIEW: We have significantly improved hospital mortality from sepsis and critical illness in last 10 years; however, over this same period we have tripled the number of 'ICU survivors' going to rehabilitation. Furthermore, as up to half the deaths in the first year following ICU admission occur post-ICU discharge, it is unclear how many of these patients ever returned home or a meaningful quality of life. For those who do survive, recent data reveals many 'ICU survivors' will suffer significant functional impairment or post-ICU syndrome (PICS). Thus, new innovative metabolic and exercise interventions to address PICS are urgently needed. These should focus on optimal nutrition and lean body mass (LBM) assessment, targeted nutrition delivery, anabolic/anticatabolic strategies, and utilization of personalized exercise intervention techniques, such as utilized by elite athletes to optimize preparation and recovery from critical care. RECENT FINDINGS: New data for novel LBM analysis technique such as computerized tomography scan and ultrasound analysis of LBM are available showing objective measures of LBM now becoming more practical for predicting metabolic reserve and effectiveness of nutrition/exercise interventions. 13C-Breath testing is a novel technique under study to predict infection earlier and predict over-feeding and under-feeding to target nutrition delivery. New technologies utilized routinely by athletes such as muscle glycogen ultrasound also show promise. Finally, the role of personalized cardiopulmonary exercise testing to target preoperative exercise optimization and post-ICU recovery are becoming reality. SUMMARY: New innovative techniques are demonstrating promise to target recovery from PICS utilizing a combination of objective LBM and metabolic assessment, targeted nutrition interventions, personalized exercise interventions for prehabilitation and post-ICU recovery. These interventions should provide hope that we will soon begin to create more 'survivors' and fewer victim's post-ICU care.


Assuntos
Continuidade da Assistência ao Paciente , Estado Terminal/reabilitação , Terapia por Exercício/métodos , Unidades de Terapia Intensiva , Debilidade Muscular/etiologia , Estado Nutricional , Cuidados Críticos , Humanos , Força Muscular , Debilidade Muscular/reabilitação , Qualidade de Vida
18.
Phys Sportsmed ; 45(2): 129-133, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28075653

RESUMO

OBJECTIVES: Creatine kinase (CK) is a sensitive enzyme marker for muscle damage in athletes. Elevated CK levels have been reported in many endurance physical activities. The consequence and possible long-term sequela of the CK elevation in athletes is unknown. There is a paucity of literature stating actual numerical values of CK associated with competing in an ultramarathon with extreme environmental conditions. Our hypothesis was that the serum CK levels increase significantly as a result of running a 161 km ultramarathon at high altitude. METHODS: This was a prospective observational study of participants of the Leadville 100 ultramarathon race in Leadville, Colorado at high altitude (2800-3840 m) in August 2014. We collected blood samples from sixty-four volunteer runners before and eighty-three runners immediately after the race. RESULTS: Out of 669 athletes who started the race, 352 successfully completed the race in less than the 30-hour cut-off time (52%). The majority of runners were male (84%). We were able to collect both pre- and post-race blood samples from 36 runners. Out of these 36 runners, the mean pre-race CK was increased from 126 ± 64 U/L to 14,569 ± 14,729 U/L (p < 0.001). There was a weak linear correlation between lower sodium levels and higher CK levels post-race (p = 0.003; R2 = 0.10). Using a multiple regression model, other than a negative correlation between sodium and CK levels (p = 0.001), there were no statistically significant correlations between post-race CK levels and athletes' age, BMI, or finishing time. CONCLUSIONS: Significant elevation of CK level occurs as a result of running ultramarathons. The majority of athletes with significantly elevated CK levels were asymptomatic and required no major medical attention.


Assuntos
Altitude , Creatina Quinase/sangue , Resistência Física/fisiologia , Corrida/fisiologia , Adulto , Idoso , Atletas , Biomarcadores/sangue , Colorado , Comportamento Competitivo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sódio/sangue
19.
Carcinogenesis ; 38(2): 119-133, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27993896

RESUMO

Herein, we use lessons learned in exercise physiology and metabolism to propose that augmented lactate production ('lactagenesis'), initiated by gene mutations, is the reason and purpose of the Warburg Effect and that dysregulated lactate metabolism and signaling are the key elements in carcinogenesis. Lactate-producing ('lactagenic') cancer cells are characterized by increased aerobic glycolysis and excessive lactate formation, a phenomenon described by Otto Warburg 93 years ago, which still remains unexplained. After a hiatus of several decades, interest in lactate as a player in cancer has been renewed. In normal physiology, lactate, the obligatory product of glycolysis, is an important metabolic fuel energy source, the most important gluconeogenic precursor, and a signaling molecule (i.e. a 'lactormone') with major regulatory properties. In lactagenic cancers, oncogenes and tumor suppressor mutations behave in a highly orchestrated manner, apparently with the purpose of increasing glucose utilization for lactagenesis purposes and lactate exchange between, within and among cells. Five main steps are identified (i) increased glucose uptake, (ii) increased glycolytic enzyme expression and activity, (iii) decreased mitochondrial function, (iv) increased lactate production, accumulation and release and (v) upregulation of monocarboxylate transporters MTC1 and MCT4 for lactate exchange. Lactate is probably the only metabolic compound involved and necessary in all main sequela for carcinogenesis, specifically: angiogenesis, immune escape, cell migration, metastasis and self-sufficient metabolism. We hypothesize that lactagenesis for carcinogenesis is the explanation and purpose of the Warburg Effect. Accordingly, therapies to limit lactate exchange and signaling within and among cancer cells should be priorities for discovery.


Assuntos
Carcinogênese/metabolismo , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo/genética , Carcinogênese/genética , Glicólise , Humanos , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
20.
Crit Care ; 19 Suppl 3: S6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26728966

RESUMO

Over the last 10 years we have significantly reduced hospital mortality from sepsis and critical illness. However, the evidence reveals that over the same period we have tripled the number of patients being sent to rehabilitation settings. Further, given that as many as half of the deaths in the first year following ICU admission occur post ICU discharge, it is unclear how many of these patients ever returned home. For those who do survive, the latest data indicate that 50-70% of ICU "survivors" will suffer cognitive impairment and 60-80% of "survivors" will suffer functional impairment or ICU-acquired weakness (ICU-AW). These observations demand that we as intensive care providers ask the following questions: "Are we creating survivors ... or are we creating victims?" and "Do we accomplish 'Pyrrhic Victories' in the ICU?" Interventions to address ICU-AW must have a renewed focus on optimal nutrition, anabolic/anticatabolic strategies, and in the future employ the personalized muscle and exercise evaluation techniques utilized by elite athletes to optimize performance. Specifically, strategies must include optimal protein delivery (1.2-2.0 g/kg/day), as an athlete would routinely employ. However, as is clear in elite sports performance, optimal nutrition is fundamental but alone is often not enough. We know burn patients can remain catabolic for 2 years post burn; thus, anticatabolic agents (i.e., beta-blockers) and anabolic agents (i.e., oxandrolone) will probably also be essential. In the near future, evaluation techniques such as assessing lean body mass at the bedside using ultrasound to determine nutritional status and ultrasound-measured muscle glycogen as a marker of muscle injury and recovery could be utilized to help find the transition from the acute phase of critical illness to the recovery phase. Finally, exercise physiology testing that evaluates muscle substrate utilization during exercise can be used to diagnose muscle mitochondrial dysfunction and to guide a personalized ideal heart rate, assisting in recovery of muscle mitochondrial function and functional endurance post ICU. In the end, future ICU-AW research must focus on using a combination of modern performance-enhancing nutrition, anticatabolic/anabolic interventions, and muscle/exercise testing so we can begin to create more "survivors" and fewer victims post ICU care.


Assuntos
Estado Terminal/reabilitação , Unidades de Terapia Intensiva , Debilidade Muscular/etiologia , Avaliação de Resultados da Assistência ao Paciente , Composição Corporal , Humanos , Doenças Musculares/fisiopatologia , Estado Nutricional , Alta do Paciente/tendências , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...